Bayesian Source Separation and Localization

نویسنده

  • Kevin H. Knuth
چکیده

The problem of mixed signals occurs in many different contexts; one of the most familiar being acoustics. The forward problem in acoustics consists of finding the sound pressure levels at various detectors resulting from sound signals emanating from the active acoustic sources. The inverse problem consists of using the sound recorded by the detectors to separate the signals and recover the original source waveforms. In general, the inverse problem is unsolvable without additional information. This general problem is called source separation, and several techniques have been developed that utilize maximum entropy, minimum mutual information, and maximum likelihood. In previous work, it has been demonstrated that these techniques can be recast in a Bayesian framework. This paper demonstrates the power of the Bayesian approach, which provides a natural means for incorporating prior information into a source model. An algorithm is developed that utilizes information regarding both the statistics of the amplitudes of the signals emitted by the sources and the relative locations of the detectors. Using this prior information, the algorithm finds the most probable source behavior and configuration. Thus, the inverse problem can be solved by simultaneously performing source separation and localization. It should be noted that this algorithm is not designed to account for delay times that are often important in acoustic source separation. However, a possible application of this algorithm is in the separation of electrophysiological signals obtained using electroencephalography (EEG) and magnetoencephalography (MEG).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Unification of Sound Source Localization and Separation with Permutation Resolution

Sound source localization and separation with permutation resolution are essential for achieving a computational auditory scene analysis system that can extract useful information from a mixture of various sounds. Because existing methods cope separately with these problems despite their mutual dependence, the overall result with these approaches can be degraded by any failure in one of these c...

متن کامل

Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents

The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging task for any inverse method. Recently, hierarchical Bayesian modeling (HB...

متن کامل

Bayesian Extension of MUSIC for Sound Source Localization and Tracking

This paper presents a Bayesian extension of MUSIC-based sound source localization (SSL) and tracking method. SSL is important for distant speech enhancement and simultaneous speech separation for improving speech recognition, as well as for auditory scene analysis by mobile robots. One of the drawbacks of existing SSLmethods is the necessity of careful parameter tunings, e.g., the sound source ...

متن کامل

Separation of multiple evoked responses using differential amplitude and latency variability

In neuroelectrophysiology one records electric potentials or magnetic fields generated by ensembles of synchronously active neurons in response to externally presented stimuli. These evoked responses are often produced by multiple generators in the presence of ongoing background activity. While source localization techniques or current source density estimation are usually used to identify gene...

متن کامل

Acoustic Space Learning for Sound-Source Separation and Localization on Binaural Manifolds

In this paper, we address the problems of modeling the acoustic space generated by a full-spectrum sound source and using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998